Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation

隐丹参酮通过 SHP-2 依赖性抑制 STAT3 活化来抑制体内和体外人类胶质瘤细胞增殖

阅读:10
作者:Liang Lu, Sulin Zhang, Cuixian Li, Chun Zhou, Dong Li, Peiqing Liu, Min Huang, Xiaoyan Shen

Abstract

Malignant gliomas (MGs) are one of the most common primary brain cancers in adults with a high mortality rate and relapse rate. Thus, finding better effective approaches to treat MGs has become very urgent. Here, we studied the effects of cryptotanshinone (CTS) on MGs in vitro and in vivo, and explored the underlying mechanisms. Effects of CTS in vitro on cell proliferation, cycle, migration and invasion were evaluated. The activation of JAK/STATs signaling was detected by western blot and immunofluorescenc staining. SHP-2 inhibitor or SiRNA were used to determine the involvement of SHP-2. The in vivo anti-MGs activity of CTS was studied with nude mice bearing intracerebral U87 xenografts. Our results revealed that CTS significantly inhibited the proliferation of MGs in vitro via inhibiting STAT3 signal pathway. The cell cycle was arrested at G0/G1 phase. Although CTS did not change the expression of total SHP-2 protein, the tyrosine phosphatase activity of SHP-2 protein was increased by CTS treatment in a dose-dependent manner in vivo and in vitro. SHP-2 inhibitor or SiRNA could reverse the inhibitory effect of CTS on phosphorylation of STAT3 Tyr705. In vivo study also showed that CTS inhibited the intracranial tumor growth and extended survival of nude mice bearing intracerebral U87 xenografts, confirming an inhibitory effect of CTS on MGs. Our results indicated CTS may be a potential therapeutic agent for MGs. The inhibitory action of CTS is largely attributed to the inhibition of STAT3 Tyr705 phosphorylation with a novel mechanism of upregulating the tyrosine phosphatase activity of SHP-2 protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。