Ethical regulations and technical challenges for research in human pathology, immunology, and therapeutic development have placed small animal models in high demand. With a close genetic and behavioral resemblance to humans, small animals such as the mouse are good candidates for human disease models, through which human-like symptoms and responses can be recapitulated. Further, the mouse genetic background can be altered to accommodate diverse demands. The NOD/SCID/IL2rγ(null) (NSG) mouse is one of the most widely used immunocompromised mouse strains; it allows engraftment with human hematopoietic stem cells and/or human tissues and the subsequent development of a functional human immune system. This is a critical milestone in understanding the prognosis and pathophysiology of human-specific diseases such as HIV/AIDS and aiding the search for a cure. Herein, we report a detailed protocol for generating a humanized NSG mouse model (hu-NSG) by hematopoietic stem cell transplantation into a radiation-conditioned neonatal NSG mouse. The hu-NSG mouse model shows multi-lineage development of transplanted human stem cells and susceptibility to HIV-1 viral infection. It also recapitulates key biological characteristics in response to combinatorial antiretroviral therapy (cART).
Humanized NOD/SCID/IL2rγnull (hu-NSG) Mouse Model for HIV Replication and Latency Studies.
用于 HIV 复制和潜伏研究的人源化 NOD/SCID/IL2rγnull (hu-NSG) 小鼠模型
阅读:4
作者:Xia Xin, Li Haitang, Satheesan Sangeetha, Zhou Jiehua, Rossi John J
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2019 | 起止号: | 2019 Jan 7; (143):10 |
| doi: | 10.3791/58255 | 种属: | Mouse |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
