Tryptophan metabolite atlas uncovers organ, age, and sex-specific variations.

色氨酸代谢物图谱揭示了器官、年龄和性别特异性差异

阅读:17
作者:Perez-Castro Lizbeth, Nawas Afshan F, Kilgore Jessica A, Garcia Roy, Lafita-Navarro M Carmen, Acosta Paul H, Nogueira Pedro A S, Williams Noelle S, Conacci-Sorrell Maralice
Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer. Investigating Trp and its metabolites in healthy tissues offers pathways to target disease-associated disruptions selectively, while preserving essential functions. In this study, we comprehensively mapped Trp metabolites across the Kyn, serotonin, and I3P pathways, as well as the microbiome-derived metabolite tryptamine, in C57BL/6 mice. Our comprehensive analysis covered 12 peripheral organs, the central nervous system, and serum in both male and female mice at three life stages: young (3 weeks), adult (54 weeks), and aged (74 weeks). We found significant tissue-, sex-, and age-specific variations in Trp metabolism, with notably higher levels of the oncometabolites I3P and Kyn in aging males. These findings emphasize the value of organ-specific analysis of Trp metabolism for understanding its role in disease progression and identifying targeted therapeutic opportunities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。