Antitubercular potential and pH-driven mode of action of salicylic acid derivatives.

水杨酸衍生物的抗结核潜力和 pH 驱动作用模式

阅读:5
作者:Laudouze Janïs, Francis Thomas, Forest Emma, Mies Frédérique, Bolla Jean-Michel, Crauste Céline, Canaan Stéphane, Shlyonsky Vadim, Santucci Pierre, Cavalier Jean-François
In the search for new antituberculosis drugs with novel mechanisms of action, we evaluated the antimycobacterial activity of a panel of eight phenolic acids against four pathogenic mycobacterial model species, including Mycobacterium tuberculosis. We demonstrated that salicylic acid (SA), as well as the iodinated derivatives 5-iodo-salicylic acid (5ISA) and 3,5-diiodo-salicylic acid (3,5diISA), displayed promising antitubercular activities. Remarkably, using a genetically encoded mycobacterial intrabacterial pH reporter, we describe for the first time that SA, 5ISA, 3,5diISA, and the anti-inflammatory drug aspirin (ASP) act by disrupting the intrabacterial pH homeostasis of M. tuberculosis in a dose-dependent manner under in vitro conditions mimicking the endolysosomal pH of macrophages. In contrast, the structurally related second-line anti-TB drug 4-aminosalicylic acid (PAS) had no pH-dependent activity and was strongly antagonized by l-methionine supplementation, thereby suggesting distinct modes of action. Finally, we propose that SA, ASP, and its two iodinated derivatives could restrict M. tuberculosis growth in a pH-dependent manner by acidifying the cytosol of the bacilli, therefore making such compounds very attractive for further development of antibacterial agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。