Differentiating follicular thyroid adenoma (FTA) from carcinoma (FTC) remains challenging due to similar histological features separate from invasion. This study developed and validated DNA- and/or protein-based classifiers. A total of 2443 thyroid samples from 1568 patients were obtained from 24 centers in China and Singapore. Next-generation sequencing of a 66-gene panel revealed 41 (62.1%) detectable genes, while 25 were not, showing similar alteration patterns with differing mutation frequencies. Proteomics quantified 10,336 proteins, with 187 dysregulated. A discovery protein-based XGBoost model achieved an AUROC of 0.899 (95% CI, 0.849-0.949), outperforming the gene-based model (AUROC 0.670 [95% CI, 0.612-0.729]). A subsequent 24-protein classifier, developed via targeted mass spectrometry and validated in three independent sets, showed high performance in retrospective cohorts (AUROC 0.871 [95% CI, 0.833-0.910] and 0.853 [95% CI, 0.772-0.934]) and prospective biopsies (AUROC 0.781 [95% CI, 0.563-1.000]). It exhibited a 95.7% negative predictive value for ruling out malignancy. This study presents a promising protein-based approach for the differential diagnosis of FTA and FTC, potentially enhancing diagnostic accuracy and clinical decision-making.
A protein-based classifier for differentiating follicular thyroid adenoma and carcinoma.
一种基于蛋白质的分类器,用于区分滤泡性甲状腺腺瘤和癌
阅读:5
作者:Sun Yaoting, Wang He, Li Lu, Wang Jianbiao, Chen Wanyuan, Peng Li, Hu Pingping, Yu Jing, Cai Xue, Yao Nan, Zhou Yan, Wang Jiatong, Wang Yingrui, Qian Liqin, Ge Weigang, Chen Mengni, Yang Feng, Gui Zhiqiang, Sun Wei, Wang Zhihong, Ge Minghua, He Yi, Wang Guangzhi, Zhao Yongfu, Chen Huanjie, Wu Xiaohong, Du Yuxin, Wei Wenjun, Wu Fan, Luo Dingcun, Lin Xiangfeng, Zheng Haitao, Zhu Xin, Wei Bei, Shen Jiafei, Yao Jincao, Yuan Zhennan, Liu Tong, Pan Jun, Zhang Yifeng, Lv Yangfan, Guo Qiaonan, Wu Qijun, Gong Tingting, Chen Ting, Zheng Shu, Zhu Jingqiang, Liu Hanqing, Chen Chuang, Han Hong, Selvarajan Sathiyamoorthy, Xing Michael Mingzhao, Kakudo Kennichi, Alexander Erik K, Wu Yijun, Wang Yu, Xu Dong, Zhang Hao, Nie Xiu, Kon Oi Lian, Iyer N Gopalakrishna, Liu Zhiyan, Zhu Yi, Guan Haixia, Guo Tiannan
| 期刊: | EMBO Molecular Medicine | 影响因子: | 8.300 |
| 时间: | 2025 | 起止号: | 2025 Jul;17(7):1519-1538 |
| doi: | 10.1038/s44321-025-00242-2 | 研究方向: | 肿瘤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
