2-Oxoglutarate dehydrogenase (Ogdh) is an important mitochondria redox sensor that can undergo S-glutathionylation following an increase in H2O2 levels. Although S-glutathionylation is required to protect Ogdh from irreversible oxidation while simultaneously modulating its activity it remains unknown if glutathione can also modulate reactive oxygen species (ROS) production by the complex. We report that reduced (GSH) and oxidized (GSSG) glutathione control O2(â-)/H2O2 formation by Ogdh through protein S-glutathionylation reactions. GSSG (1mM) induced a modest decrease in Ogdh activity which was associated with a significant decrease in O2(â-)/H2O2 formation. GSH had the opposite effect, amplifying O2(â-)/H2O2 formation by Ogdh. Incubation of purified Ogdh in 2.5mM GSH led to significant increase in O2(â-)/H2O2 formation which also lowered NADH production. Inclusion of enzymatically active glutaredoxin-2 (Grx2) in reaction mixtures reversed the GSH-mediated amplification of O2(â-)/H2O2 formation. Similarly pre-incubation of permeabilized liver mitochondria from mouse depleted of GSH showed an approximately ~3.5-fold increase in Ogdh-mediated O2(â-)/H2O2 production that was matched by a significant decrease in NADH formation which could be reversed by Grx2. Taken together, our results demonstrate GSH and GSSG modulate ROS production by Ogdh through S-glutathionylation of different subunits. This is also the first demonstration that GSH can work in the opposite direction in mitochondria-amplifying ROS formation instead of quenching it. We propose that this regulatory mechanism is required to modulate ROS emission from Ogdh in response to variations in glutathione redox buffering capacity.
Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.
GSH介导的2-氧戊二酸脱氢酶的S-谷胱甘肽化诱导线粒体活性氧的产生
阅读:4
作者:Mailloux Ryan J, Craig Ayre D, Christian Sherri L
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2016 | 起止号: | 2016 Aug;8:285-97 |
| doi: | 10.1016/j.redox.2016.02.002 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
