Replication-dependent histones have a stem-loop structure at the 3' end of messenger RNA (mRNA) and are stabilized by stem-loop binding protein (SLBP). Moreover, loss of SLBP and imbalance in the level of ARE (adenylate-uridylate-rich elements)-binding proteins, HuR, and BRF1 are associated with the polyadenylation of canonical histone mRNAs under different physiological conditions. Previous studies from the lab have shown increased protein levels of H2A1H and H3.2 in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC). In this study, we report that increase in the polyadenylation of histone mRNA contributes to increased levels of H2A1H and H3.2 in NDEA-induced HCC. The persistent exposure to carcinogen with polyadenylation of histone mRNA increases the total histone pool resulting in aneuploidy. The embryonic liver has also shown increased polyadenylated histone isoforms, Hist1h2ah and Hist2h3c2, primarily contributing to their increased protein levels. The increase in polyadenylation of histone mRNA in HCC and e15 are in coherence with the decrease in SLBP and BRF1 with an increase in HuR. Our studies in neoplastic CL38 cell line showed that direct stress on the cells induces downregulation of SLBP with enhanced histone isoform polyadenylation. Moreover, the polyadenylation is related to increase in activated MAP kinases, p38, ERK, and JNK in HCC liver tumor tissues and CL38 cells treated with arsenic. Our data suggest that SLBP degrades under stress, destabilizing the stem-loop, elongating histone isoforms mRNA with 3' polyadenylated tail with increase of HuR and decrease of BRF1. Overall, our results indicate that SLBP may play an essential part in cell proliferation, at least in persistent exposure to stress, by mediating the stabilization of histone isoforms throughout the cell cycle.
An increase in polyadenylation of histone isoforms, Hist1h2ah and Hist2h3c2, is governed by 3'-UTR in de-differentiated and undifferentiated hepatocyte.
在去分化和未分化的肝细胞中,组蛋白异构体 Hist1h2ah 和 Hist2h3c2 的多聚腺苷酸化增加受 3'-UTR 控制
阅读:12
作者:Verma Tripti, Natu Abhiram, Khade Bharat, Gera Poonam, Gupta Sanjay
| 期刊: | Experimental Biology and Medicine | 影响因子: | 2.700 |
| 时间: | 2023 | 起止号: | 2023 Jun;248(11):948-958 |
| doi: | 10.1177/15353702231160328 | 靶点: | H3 |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
