In this paper, we have developed and analyzed a deterministic Zika model considering both vector and sexual transmission route with the effect of human awareness and vector control in the absence of disease induce death. To formulate the model, we assume that the Zika virus is being first transmitted to human by mosquito bite, and then it is being transmitted to his or her sexual partner. The system contains at most three equilibrium points among them one is the disease free and other two are endemic equilibrium points, exists under certain conditions. The theoretical analysis shows that the diseases-free equilibrium is locally and globally asymptotically stable if the basic reproduction number is less than one. Theatrically we have established that endemic equilibrium point which is locally asymptotically stable if the basic reproduction number is greater than one. The system exhibits backward bifurcation when the transmission probability per biting of susceptible mosquito with infected humans crosses the critical value. We estimate the model parameters and validate the model by fitting the model with the reported Zika infected human data from 1 to 36 week of 2016 Zika outbreak in Colombia. Furthermore, using the normalised forward sensitivity index method we have established that the model parameter mosquito biting rate, recruitment rate of mosquito, transmission probability per biting of Susceptible (infected) humans with infected (susceptible) mosquito, rate of awareness in host population, recovery rates of infected human are most sensitive parameters of the considered Zika model. Lastly, some conclusions are given to control the spreading of the Zika disease.
Mathematical model of zika virus dynamics with vector control and sensitivity analysis.
寨卡病毒动力学的数学模型及其媒介控制和敏感性分析
阅读:4
作者:Biswas Sudhanshu Kumar, Ghosh Uttam, Sarkar Susmita
| 期刊: | Infectious Disease Modelling | 影响因子: | 2.500 |
| 时间: | 2020 | 起止号: | 2019 Dec 18; 5:23-41 |
| doi: | 10.1016/j.idm.2019.12.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
