Enhanced convergence in p-bit based simulated annealing with partial deactivation for large-scale combinatorial optimization problems.

针对大规模组合优化问题,采用部分失活的基于 p 位模拟退火算法可提高收敛性

阅读:5
作者:Onizawa Naoya, Hanyu Takahiro
This article critically investigates the limitations of the simulated annealing algorithm using probabilistic bits (pSA) in solving large-scale combinatorial optimization problems. The study begins with an in-depth analysis of the pSA process, focusing on the issues resulting from unexpected oscillations among p-bits. These oscillations hinder the energy reduction of the Ising model and thus obstruct the successful execution of pSA in complex tasks. Through detailed simulations, we unravel the root cause of this energy stagnation, identifying the feedback mechanism inherent to the pSA operation as the primary contributor to these disruptive oscillations. To address this challenge, we propose two novel algorithms, time average pSA (TApSA) and stalled pSA (SpSA). These algorithms are designed based on partial deactivation of p-bits and are thoroughly tested using Python simulations on maximum cut benchmarks that are typical combinatorial optimization problems. On the 16 benchmarks from 800 to 5000 nodes, the proposed methods improve the normalized cut value from 0.8 to 98.4% on average in comparison with the conventional pSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。