A Novel Liquid Chromatography-Tandem Mass Spectrometry Method to Quantify Tryptophan and Its Major Metabolites in Serum to Support Biomarker Studies in Patients with Cancer Undergoing Immunotherapy.

一种新型液相色谱-串联质谱法定量分析血清中色氨酸及其主要代谢物,以支持接受免疫治疗的癌症患者的生物标志物研究

阅读:4
作者:SiemiÄ tkowska Anna, Kuźnar-Kamińska Barbara, Kosicka-Noworzyń Katarzyna, Nowaczewska Kamila, Winiarska Hanna, Popiołek Dominika, Kamiński Filip, Główka Franciszek K
Tryptophan (TRP) is an essential amino acid crucial for the production of many bioactive compounds. Disturbances in TRP metabolism have been revealed in various diseases, many of which are closely related to the immune system. In recent years, we have focused on finding blood-based biomarkers of successful immunotherapy in cancer. Thus, we aimed to develop a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for TRP and its metabolites that could be used in biomarker studies. Although analyzing TRP derivatives in biological matrices is not a new topic, we encountered multiple challenges during method development. One of them was the phenomenon of cross-interferences between the analyzed molecules, which has not been explored in most published papers. We noticed that injecting a pure single-compound solution often generated a signal in the other compounds' MS/MS channels. Specifically, TRP generated unexpected peaks in the channel for kynurenine, kynurenic acid, and xanthurenic acid, while kynurenine generated peaks in the channel for kynurenic acid. We also recorded a mutual cross-talk between kynurenine and isotope-labeled TRP. Different origins of the observed cross-signal contribution were proposed. This paper draws attention to investigating cross-interferences in LC-MS/MS, especially when structurally related compounds will be analyzed. Despite all the challenges, the method was successfully validated according to international guidelines (EMA/ICH), and its applicability was confirmed in a pilot study including 20 patients with lung cancer undergoing chemoimmunotherapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。