Extracellular vesicles regulate the human osteoclastogenesis: divergent roles in discrete inflammatory arthropathies

细胞外囊泡调节人类破骨细胞生成:在不同炎症性关节病中发挥不同作用

阅读:5
作者:Nikolett Marton, Orsolya Tünde Kovács, Eszter Baricza, Ágnes Kittel, Dávid Győri, Attila Mócsai, Florian M P Meier, Carl S Goodyear, Iain B McInnes, Edit I Buzás, György Nagy

Conclusions

Our data suggest that blood-derived EXOs are novel regulators of the human osteoclastogenesis and may offer discrete effector function in distinct inflammatory arthropathies.

Methods

Blood samples from healthy volunteers, rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients were collected. Size-based EV sub-fractions were isolated by gravity-driven filtration and differential centrifugation. To investigate the properties of EV samples, resistive pulse sensing technique, transmission electron microscopy, flow cytometry and western blot were performed. CD14+ monocytes were separated from PBMCs, and stimulated with recombinant human M-CSF, RANKL and blood-derived EV sub-fractions. After 7 days, the cells were fixed and stained for tartrate-resistant acid phosphatase and counted.

Objective

Extracellular vesicles (EVs) are subcellular signalosomes. Although characteristic EV production is associated with numerous physiological and pathological conditions, the effect of blood-derived EVs on bone homeostasis is unknown. Herein we evaluated the role of circulating EVs on human osteoclastogenesis.

Results

EVs isolated by size-based sub-fractions were characterized as either microvesicles or exosomes (EXO). Healthy (n = 11) and RA-derived (n = 12) EXOs profoundly inhibited osteoclast differentiation (70%, p < 0.01; 65%, p < 0.01, respectively). In contrast, PsA-derived (n = 10) EXOs had a stimulatory effect (75%, p < 0.05). In cross-treatment experiments where EXOs and CD14+ cells were interchanged between the three groups, only healthy (n = 5) and RA (n = 5)-derived EXOs inhibited (p < 0.01, respectively) the generation of osteoclasts in all groups, whereas PsA (n = 7)-derived EXOs were unable to mediate this effect. Conclusions: Our data suggest that blood-derived EXOs are novel regulators of the human osteoclastogenesis and may offer discrete effector function in distinct inflammatory arthropathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。