Understanding the toxicity induced by radiation-triggered neuroinflammation and the on-demand design of targeted peptide nanodrugs.

了解辐射引发的神经炎症所引起的毒性以及靶向肽纳米药物的按需设计

阅读:13
作者:Shang Yue, Hu Xueyin, Ren Meixia, Ma Longbo, Zhao Xiaoyu, Gao Cong, Zhang Lumeng, Li Shuqin, Liu Luntao, Zou Bingwen, Fan Saijun
Radiation-induced brain injury (RIBI) represents a severe complication of cranial radiotherapy, substantially diminishing patients' quality of life. Unlike conventional brain injuries, RIBI evokes a unique chronic neuroinflammatory response that notably aggravates neurodegenerative processes. Despite significant progress in understanding the molecular mechanisms related to neuroinflammation, the specific and precise mechanisms that regulate neuroinflammation in RIBI and its associated toxicological effects remain largely unclear. Additionally, targeted neuroprotective strategies for RIBI are currently lacking. In this study, we systematically characterized the pathophysiology of RIBI using zebrafish (larvae/adults) and murine models. We established direct associations between neuronal damage and cognitive-behavioral deficits. Mechanistically, we proposed a ROS-mitochondrial-immune axis. Specifically, radiation-induced ROS lead to mitochondrial dysfunction, resulting in the leakage of mitochondrial DNA into the cytosol. This, in turn, activated the cGAS-STING pathway, thereby driving persistent microglia-mediated neuroinflammation. Furthermore, we engineered a dual-function nanotherapeutic agent, Pep-Cu(5.4)O@H151. This agent integrates ultrasmall copper-based nanozymes (Cu(5.4)O) for ROS scavenging and H151 (a STING inhibitor) and is conjugated with peptides that can penetrate the blood-brain barrier and target microglia. This nanoplatform exhibited excellent synergistic therapeutic efficacy by simultaneously neutralizing oxidative stress and blocking inflammatory cascades. Our research provided an in-depth analysis of radiation-induced neurotoxicity, clarifying the crucial ROS-mitochondrial-immune axis. Moreover, we have developed a precise therapeutic strategy on the basis of this mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。