Radiation-induced brain injury (RIBI) represents a severe complication of cranial radiotherapy, substantially diminishing patients' quality of life. Unlike conventional brain injuries, RIBI evokes a unique chronic neuroinflammatory response that notably aggravates neurodegenerative processes. Despite significant progress in understanding the molecular mechanisms related to neuroinflammation, the specific and precise mechanisms that regulate neuroinflammation in RIBI and its associated toxicological effects remain largely unclear. Additionally, targeted neuroprotective strategies for RIBI are currently lacking. In this study, we systematically characterized the pathophysiology of RIBI using zebrafish (larvae/adults) and murine models. We established direct associations between neuronal damage and cognitive-behavioral deficits. Mechanistically, we proposed a ROS-mitochondrial-immune axis. Specifically, radiation-induced ROS lead to mitochondrial dysfunction, resulting in the leakage of mitochondrial DNA into the cytosol. This, in turn, activated the cGAS-STING pathway, thereby driving persistent microglia-mediated neuroinflammation. Furthermore, we engineered a dual-function nanotherapeutic agent, Pep-Cu(5.4)O@H151. This agent integrates ultrasmall copper-based nanozymes (Cu(5.4)O) for ROS scavenging and H151 (a STING inhibitor) and is conjugated with peptides that can penetrate the blood-brain barrier and target microglia. This nanoplatform exhibited excellent synergistic therapeutic efficacy by simultaneously neutralizing oxidative stress and blocking inflammatory cascades. Our research provided an in-depth analysis of radiation-induced neurotoxicity, clarifying the crucial ROS-mitochondrial-immune axis. Moreover, we have developed a precise therapeutic strategy on the basis of this mechanism.
Understanding the toxicity induced by radiation-triggered neuroinflammation and the on-demand design of targeted peptide nanodrugs.
了解辐射引发的神经炎症所引起的毒性以及靶向肽纳米药物的按需设计
阅读:4
作者:Shang Yue, Hu Xueyin, Ren Meixia, Ma Longbo, Zhao Xiaoyu, Gao Cong, Zhang Lumeng, Li Shuqin, Liu Luntao, Zou Bingwen, Fan Saijun
| 期刊: | Signal Transduction and Targeted Therapy | 影响因子: | 52.700 |
| 时间: | 2025 | 起止号: | 2025 Sep 4; 10(1):286 |
| doi: | 10.1038/s41392-025-02375-9 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
