The extensive glycosylation of HIV-1 envelope (Env) glycoprotein leaves few glycan-free holes large enough to admit broadly neutralizing antibodies (bnAb). Consequently, most bnAbs must inevitably make some glycan contacts and avoid clashes with others. To investigate how Env glycan maturation regulates HIV sensitivity to bnAbs, we modified HIV-1 pseudovirus (PV) using various glycoengineering (GE) tools. Promoting the maturation of α-2,6 sialic acid (SA) glycan termini increased PV sensitivity to two bnAbs that target the V2 apex and one to the interface between Env surface gp120 and transmembrane gp41 subunits, typically by up to 30-fold. These effects were reversible by incubating PV with neuraminidase. The same bnAbs were unusually potent against PBMC-produced HIV-1, suggesting similar α-2,6 hypersialylated glycan termini may occur naturally. Overexpressing β-galactosyltransferase during PV production replaced complex glycans with hybrid glycans, effectively 'thinning' trimer glycan coverage. This increased PV sensitivity to some bnAbs but ablated sensitivity to one bnAb that depends on complex glycans. Other bnAbs preferred small glycans or galactose termini. For some bnAbs, the effects of GE were strain-specific, suggesting that GE had context-dependent effects on glycan clashes. GE was also able to increase the percent maximum neutralization (i.e. saturation) by some bnAbs. Indeed, some bnAb-resistant strains became highly sensitive with GE-thus uncovering previously unknown bnAb breadth. As might be expected, the activities of bnAbs that recognize glycan-deficient or invariant oligomannose epitopes were largely unaffected by GE. Non-neutralizing antibodies were also unaffected by GE, suggesting that trimers remain compact. Unlike mature bnAbs, germline-reverted bnAbs avoided or were indifferent to glycans, suggesting that glycan contacts are acquired as bnAbs mature. Together, our results suggest that glycovariation can greatly impact neutralization and that knowledge of the optimal Env glycoforms recognized by bnAbs may assist rational vaccine design.
Glycoengineering HIV-1 Env creates 'supercharged' and 'hybrid' glycans to increase neutralizing antibody potency, breadth and saturation.
对 HIV-1 Env 进行糖基工程改造,可产生“超强”和“混合”聚糖,以增强中和抗体的效力、广度和饱和度
阅读:8
作者:Crooks Ema T, Grimley Samantha L, Cully Michelle, Osawa Keiko, Dekkers Gillian, Saunders Kevin, Rämisch Sebastian, Menis Sergey, Schief William R, Doria-Rose Nicole, Haynes Barton, Murrell Ben, Cale Evan Mitchel, Pegu Amarendra, Mascola John R, Vidarsson Gestur, Binley James M
| 期刊: | PLoS Pathogens | 影响因子: | 4.900 |
| 时间: | 2018 | 起止号: | 2018 May 2; 14(5):e1007024 |
| doi: | 10.1371/journal.ppat.1007024 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
