Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping

大规模基于 DNA 的表型记录和深度学习可实现高度精确的序列功能映射

阅读:4
作者:Simon Höllerer #, Laetitia Papaxanthos #, Anja Cathrin Gumpinger, Katrin Fischer, Christian Beisel, Karsten Borgwardt, Yaakov Benenson, Markus Jeschek

Abstract

Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such datasets are either application-specific or technically complex and error-prone. Here, we introduce DNA-based phenotypic recording as a widely applicable, practicable approach to generate large-scale sequence-function datasets. We use a site-specific recombinase to directly record a GRE's effect in DNA, enabling readout of both sequence and quantitative function for extremely large GRE-sets via next-generation sequencing. We record translation kinetics of over 300,000 bacterial ribosome binding sites (RBSs) in >2.7 million sequence-function pairs in a single experiment. Further, we introduce a deep learning approach employing ensembling and uncertainty modelling that predicts RBS function with high accuracy, outperforming state-of-the-art methods. DNA-based phenotypic recording combined with deep learning represents a major advance in our ability to predict function from genetic sequence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。