RATIONALE: The recent development of cavity ring-down laser spectroscopy (CRDS) instruments capable of measuring (17) O-excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen ((17) O/(16) O, (18) O/(16) O) and hydrogen ((2) H/(1) H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post-depositional interaction with other fluids. METHODS: We developed a semi-automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ(17) O, δ(18) O and δ(2) H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long-term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of (17) O-excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2 . RESULTS: The long-term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07Ⱐfor δ(17) O values, ±0.13Ⱐfor δ(18) O values and ±0.49Ⱐfor δ(2) H values (all ±1SD), and ±1.1Ⱐand ±8 per meg for the deuterium-excess and (17) O-excess, respectively. Accurate measurement of the (17) O-excess values of GHW, of both synthetic and natural samples, requires the use of a micro-combustion module (MCM). This accessory removes contaminants (VOCs, H2 S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. CONCLUSIONS: We demonstrate that precise and simultaneous isotopic measurements of δ(17) O, δ(18) O and δ(2) H values, and the derived deuterium-excess and (17) O-excess, can be obtained from GHW and brines using a new extraction apparatus and subsequent measurement by CRDS. This method provides new opportunities for the application of water isotope tracers in hydrologic and paleoclimatologic research.
Simultaneous analysis of (17) O/(16) O, (18) O/(16) O and (2) H/(1) H of gypsum hydration water by cavity ring-down laser spectroscopy.
利用腔衰荡激光光谱法同时分析石膏水合水中的 (17) O/(16) O、(18) O/(16) O 和 (2) H/(1) H
阅读:3
作者:Gázquez Fernando, Mather Ian, Rolfe James, Evans Nicholas P, Herwartz Daniel, Staubwasser Michael, Hodell David A
| 期刊: | Rapid Communications in Mass Spectrometry | 影响因子: | 1.700 |
| 时间: | 2015 | 起止号: | 2015 Nov 15; 29(21):1997-2006 |
| doi: | 10.1002/rcm.7312 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
