OBJECTIVE: To explore the effects of resveratrol (RSV) on hair cell apoptosis caused by sudden sensorineural hearing loss (SSNHL) and its effect on lipopolysaccharide-induced apoptosis of HEI-OC1 cells. METHODS: We used the network pharmacology method to screen molecules related to RSV for the treatment of SSNHL and analyzed these molecules and their enriched biological processes and signaling pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. We selected hub genes related to apoptosis using protein-protein interaction (PPI) analysis for in vitro and molecular docking verification. RESULTS: Eighty overlapping genes were identified as potential targets for RSV treatment of SSNHL. Further GO analysis showed that the biological processes were mainly related to toxicity, cell proliferation, and lipopolysaccharide reactions. KEGG analysis showed that the AGE-RAGE signaling pathway in diabetic complications, Kaposi's sarcoma-associated herpesvirus infection, FoxO signaling pathway, PI3K-Akt signaling pathway, and other inflammatory signaling pathways were concentrated. AKT1, STAT3, JUN, TNF, TP53, MAPK3, CASP3, and VEGFA were screened as HUB genes using PPI analysis. The apoptosis-related proteins TNF, CASP3, AKT1, and TP53 were selected for in vitro experiments, which showed that mRNA was significantly different before and after RSV intervention, confirming that the corresponding protein receptors could bind well with RSV. CONCLUSION: RSV mainly affects the prognosis of SSNHL through anti-inflammatory effects and may improve hair cell apoptosis caused by inflammatory factors through multitargeted interventions involving TNF, CASP3, AKT1, and TP53.
Resveratrol Ameliorates Lipopolysaccharide-Induced Sudden Sensorineural Hearing Loss in In Vitro Model through Multitarget Antiapoptotic Mechanism Based on Network Pharmacology and Molecular Docking.
基于网络药理学和分子对接的多靶点抗凋亡机制,白藜芦醇在体外模型中改善脂多糖诱导的突发性感觉神经性听力损失
阅读:4
作者:Ye Shiming, Liu Jing, Dong Qi, Wang Xinxin, Wandong She
| 期刊: | Evidence-Based Complementary and Alternative Medicine | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 May 19; 2022:6404588 |
| doi: | 10.1155/2022/6404588 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
