OBJECTIVE: This study investigates how the inflammatory response of ATDC5 murine chondrogenic cells influences the activity of C6 (rat) and GL261 (mouse) glial cell lines. Prior research suggested nitric oxide (NO) involvement in cartilage-immune crosstalk. The current study explores whether NO, produced by inflamed chondrocytes, mediates signaling between chondrocytes and glial cells. DESIGN: Pre-challenged ATDC5 cells with 250 ng/ml of lipopolysaccharide (LPS) were cocultured with GL261 or C6 glioma cells for 24 h with a transwell culture system. Cell viability was assessed using MTT assay. Gene and protein expression were evaluated by qRT-PCR and WB, respectively. RESULTS: Real-time reverse transcription-polymerase chain reaction (RT-qPCR) indicated statistically significant upregulation of LCN2, IL-6, TNF-α, IL-1β, and GFAP in glial cells following 24-h coculture with challenged ATDC5 cells. Suppression of LPS-induced NO production by aminoguanidine decreased LPS-mediated LCN2 and IL-6 expression in glioma cells. We identified also the involvement of the ERK1/2 and AKT signaling pathways in the glial neuroinflammatory response. CONCLUSIONS: This study demonstrates, for the first time, that NO produced by inflamed murine chondrocytes mediated pro-inflammatory responses in glial cells via ERK1/2 and AKT signaling, highlighting a potential mechanism linking cartilage NO to neuroinflammation and chronic pain in osteoarthritis.
Impact of Chondrocyte Inflammation on Glial Cell Activation: The Mediating Role of Nitric Oxide.
软骨细胞炎症对神经胶质细胞活化的影响:一氧化氮的介导作用
阅读:4
作者:Farrag Mariam, Cordero-Barreal Alfonso, Ait Eldjoudi Djedjiga, Varela-GarcÃa MarÃa, Torrijos Pulpón Carlos, Lago Francisca, Essawy Amina, Soffar Ahmed, Pino Jesus, Farrag Yousof, Gualillo Oreste
| 期刊: | Cartilage | 影响因子: | 2.700 |
| 时间: | 2024 | 起止号: | 2024 Oct 29 |
| doi: | 10.1177/19476035241292323 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
