The free-radical-operated mechanism of death of activated macrophages at sites of inflammation is unclear, but it is important to define it in order to find targets to prevent further tissue dysfunction. A well-defined model of macrophage activation at sites of inflammation is the treatment of RAW 264.7 cells with lipopolysaccharide (LPS), with the resulting production of reactive oxygen species (ROS). ROS and other free radicals can be trapped with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), a cell-permeable probe with antioxidant properties, which thus interferes with free-radical-operated oxidation processes. Here we have used immuno-spin trapping to investigate the role of free-radical-operated protein oxidation in LPS-induced cytotoxicity in macrophages. Treatment of RAW 264.7 cells with LPS resulted in increased ROS production, oxidation of proteins, cell morphological changes and cytotoxicity. DMPO was found to trap protein radicals to form protein-DMPO nitrone adducts, to reduce protein carbonyls, and to block LPS-induced cell death. N-Acetylcysteine (a source of reduced glutathione), diphenyleneiodonium (an inhibitor of NADPH oxidase), and 2,2'-dipyridyl (a chelator of Fe(2+)) prevented LPS-induced oxidative stress and cell death and reduced DMPO-nitrone adduct formation, suggesting a critical role of ROS, metals, and protein-radical formation in LPS-induced cell cytotoxicity. We also determined the subcellular localization of protein-DMPO nitrone adducts and identified some candidate proteins for DMPO attachment by LC-MS/MS. The LC-MS/MS data are consistent with glyceraldehyde-3-phosphate dehydrogenase, one of the most abundant, sensitive, and ubiquitous proteins in the cell, becoming labeled with DMPO when the cell is primed with LPS. This information will help find strategies to treat inflammation-associated tissue dysfunction by focusing on preventing free radical-operated proteotoxic stress and death of macrophages.
Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide.
脂多糖预处理的巨噬细胞中自由基引起的蛋白毒性应激
阅读:5
作者:Zhai Zili, Gomez-Mejiba Sandra E, Gimenez Maria S, Deterding Leesa J, Tomer Kenneth B, Mason Ronald P, Ashby Michael T, Ramirez Dario C
| 期刊: | Free Radical Biology and Medicine | 影响因子: | 8.200 |
| 时间: | 2012 | 起止号: | 2012 Jul 1; 53(1):172-81 |
| doi: | 10.1016/j.freeradbiomed.2012.04.023 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
