Oxidative stress preferentially induces a subtype of micronuclei and mediates the genomic instability caused by p53 dysfunction

氧化应激优先诱导一种亚型微核并介导 p53 功能障碍引起的基因组不稳定性

阅读:7
作者:Bing Xu, Wenxing Wang, Haiyang Guo, Zhaoliang Sun, Zhao Wei, Xiyu Zhang, Zhaojian Liu, Jay A Tischfield, Yaoqin Gong, Changshun Shao

Abstract

Reactive oxygen species (ROS) are known to cause many types of DNA lesions that could be converted into cancer-promoting genetic alterations. Evidence showed that tumor suppressor p53 plays an important role in regulating the generation of cellular ROS, either by reducing oxidative stress under physiological and mildly stressed conditions, or by promoting oxidative stress under highly stressed conditions. In this report we characterized the effect of oxidative stress on the induction of micronuclei, especially the subclass marked by pan-staining of γ-H2AX or MN-γ-H2AX (+). We found that MN-γ-H2AX (+) were more responsive to hydrogen peroxide (H2O2) than the MN-γ-H2AX (−). In human and mouse cells that are deficient in p53, the frequency of MN-γ-H2AX (+) is significantly elevated, but can be attenuated by antioxidant N-acetylcysteine (NAC). Depletion of p53-regulated antioxidant gene SESN1 by RNA interference also resulted in an elevation of MN-γ-H2AX (+). Furthermore, we found that in cells that were depleted of p400 by RNAi, and therefore were experiencing increased ROS, the frequency of MN-γ-H2AX (+), but not that of MN-γ-H2AX (−), was significantly induced. We further demonstrated that the induction of MN-γ-H2AX (+) by replication stress can also be attenuated by NAC, and that H2O2 also leads to increased phosphorylation of Chk1 and Rad17 that mimics replication stress, suggesting that replication stress and oxidative stress are intertwined and may reinforce each other in driving genomic instability. Our findings illustrate the importance of p53-regulated redox level in the maintenance of genomic stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。