Docosahexaenoic Acid Controls Pulmonary Macrophage Lipid Raft Size and Inflammation.

二十二碳六烯酸控制肺巨噬细胞脂筏大小和炎症

阅读:5
作者:Pennington Edward Ross, Virk Rafia, Bridges Meagan D, Bathon Brooke E, Beatty Nari, Gray Rosemary S, Kelley Patrick, Wassall Stephen R, Manke Jonathan, Armstrong Michael, Reisdorph Nichole, Vanduinen Rachel, Fenton Jenifer I, Gowdy Kymberly M, Shaikh Saame Raza
BACKGROUND: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS: MH-S cells, an alveolar macrophage line, were treated with 50 μM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS: DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS: The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。