Induction of monocyte chemoattractant protein-1 (MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral neuropathy.

初级感觉神经元中单核细胞趋化蛋白-1 (MCP-1) 及其受体 CCR2 的诱导是紫杉醇诱发周围神经病变的原因之一

阅读:2
作者:Zhang Haijun, Boyette-Davis Jessica A, Kosturakis Alyssa K, Li Yan, Yoon Seo-Yeon, Walters Edgar T, Dougherty Patrick M
The use of paclitaxel (Taxol), a microtubule stabilizer, for cancer treatment is often limited by its associated peripheral neuropathy (chemotherapy-induced peripheral neuropathy [CIPN]), which predominantly results in sensory dysfunction, including chronic pain. Here we show that paclitaxel CIPN was associated with induction of chemokine monocyte chemoattractant protein-1 (MCP-1) and its cognate receptor CCR2 in primary sensory neurons of dorsal root ganglia. Immunostaining revealed that MCP-1 was mainly expressed in small nociceptive neurons whereas CCR2 was expressed in large and medium-sized myelinated neurons. Direct application of MCP-1 consistently induced intracellular calcium increases in dorsal root ganglia large and medium-sized neurons but not in small neurons mainly dissociated from paclitaxel-treated but not vehicle-treated animals. Paclitaxel also induced increased expression of MCP-1 in spinal astrocytes, but no CCR2 signal was detected in the spinal cord. Local blockade of MCP-1/CCR2 signaling by anti-MCP-1 antibody or CCR2 antisense oligodeoxynucleotides significantly attenuated paclitaxel CIPN phenotypes including mechanical hypersensitivity and loss of intraepidermal nerve fibers in hindpaw glabrous skin. These results suggest that activation of paracrine MCP-1/CCR2 signaling between dorsal root ganglion neurons plays a critical role in the development of paclitaxel CIPN, and targeting MCP-1/CCR2 signaling could be a novel therapeutic approach. PERSPECTIVE: CIPN is a severe side effect accompanying paclitaxel chemotherapy and lacks effective treatments. The current study suggests that blocking MCP-1/CCR2 signaling could be a new therapeutic strategy to prevent or reverse paclitaxel CIPN. This preclinical evidence encourages future clinical evaluation of this strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。