Assessing the Dispersion Stability of Antimicrobial Fillers in Photosensitive Resin for Vat Polymerization 3D Printing.

评估用于光敏树脂的固化3D打印中抗菌填料的分散稳定性

阅读:8
作者:Shannon Alice, O'Sullivan Aidan, O'Sullivan Kevin J, Clifford Seamus, O'Sullivan Leonard
Polymers are widely used in healthcare due to their biocompatibility and mechanical properties; however, the use of polymers in medical products can promote biofilm formation, which can be a source of hospital-acquired infections. Due to this, there is a rising demand for inherently antimicrobial polymers for devices in contact with patients. 3D printing as a manufacturing technology has increased exponentially in recent years. Surgical guides, orthotics, and prosthetics, among other medical devices, created by vat polymerization have been used in hospitals to treat patients. Biocompatible resins are available for these applications, but there is a lack of antimicrobial resins, which would further improve the technology for clinical use. The focus of this study was to assess settling of candidate antimicrobial metal and metal oxide fillers in vat polymerization resin to determine which fillers were compatible with the resin. Dispersion stability was assessed by measuring settling over the maximum print duration of the medium priced desktop 3D printers to evaluate printability of 17 potentially antimicrobial resins. Eight materials displayed settling behavior during the test period: molybdenum oxide, zirconium oxide nanopowder, scandium oxide, zirconium oxide, titanium oxide, tungsten oxide, lanthanum oxide, and magnesium oxide. No settling was observed for manganese oxide, magnesium oxide nanopowder, titanium oxide nanopowder, copper oxide, silver oxide, zinc oxide nanopowder, zinc oxide, silver nanopowder, and gold nanopowder during the test period. This method could be applied to assess settling of other fillers introduced into 3D printing resins before actual printing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。