Nitric oxide (NO)-induced oxidative stress contributes to a variety of diseases. Although numerous mechanisms have been described controlling the production of NO, the mechanisms to prevent NO-induced cytotoxicity after NO synthesis are largely unknown. Here we report that scavenger receptor BI (SR-BI) prevents NO-induced cytotoxicity. Using CHO cell lines expressing wild-type and single-site mutant SR-BI protein, we demonstrate that SR-BI prevents NO-induced cytotoxicity and that a highly conserved CXXS redox motif is required for the anti-NO cytotoxicity activity of SR-BI. Using genetically manipulated mice, we demonstrate that SR-BI-null mice have a 3- to 4-fold increase in tyrosine nitrated proteins in aorta and liver compared with wild-type littermates, indicating that expression of SR-BI prevents peroxynitrite formation in vivo. Using lipopolysacharide (LPS)-challenged mice as an in vivo model of NO-induced cytotoxicity, we found that a single dose of LPS (120,000 U/g IP) induced 90% fatality of SR-BI-null mice within 3 days, whereas all of the wild-type littermates survived (n=20), demonstrating that SR-BI is highly protective against NO cytotoxicity in vivo. Importantly, SR-BI prevents LPS-induced death without eliminating NO production, suggesting that SR-BI prevents NO-induced cytotoxicity post-NO synthesis. Our study describes a novel observation that may shed new light on the treatment of nitric oxidative stress-associated diseases, such as septic shock.
Scavenger receptor BI prevents nitric oxide-induced cytotoxicity and endotoxin-induced death.
清道夫受体 BI 可防止一氧化氮诱导的细胞毒性和内毒素诱导的细胞死亡
阅读:5
作者:Li Xiang-An, Guo Ling, Asmis Reto, Nikolova-Karakashian Mariana, Smart Eric J
| 期刊: | Circulation Research | 影响因子: | 16.200 |
| 时间: | 2006 | 起止号: | 2006 Apr 14; 98(7):e60-5 |
| doi: | 10.1161/01.RES.0000219310.00308.10 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
