Neodymium-Facilitated Visualization of Extreme Phosphate Accumulation in Fibroblast Filopodia: Implications for Intercellular and Cell-Matrix Interactions.

钕促进成纤维细胞丝状伪足中极端磷酸盐积累的可视化:对细胞间和细胞-基质相互作用的影响

阅读:3
作者:Kravchik Marina, Subbot Anastasia, Bilyalov Airat, Novikov Ivan, Deviatiiarov Ruslan, Yusef Yusef, Gusev Oleg
A comprehensive understanding of intercellular and cell-matrix interactions is essential for advancing our knowledge of cell biology. Existing techniques, such as fluorescence microscopy and electron microscopy, face limitations in resolution and sample preparation. Supravital lanthanoid staining provides new opportunities for detailed visualization of cellular metabolism and intercellular interactions. This study aims to describe the structure, elemental chemical, and probable origin of zones of extreme lanthanoid (neodymium) accumulation that form during preparation for scanning electron microscopy (SEM) analysis in corneal fibroblasts filopodia. The results identified three morphological patterns of neodymium staining in fibroblast filopodia, each exhibiting asymmetric staining within a thin, sharp, and extremely bright barrier zone, located perpendicular to the filopodia axis. Semi-quantitative chemical analyses showed neodymium-labeled non-linear phosphorus distribution within filopodia, potentially indicating varying phosphate anion concentrations and extreme phosphate accumulation at a physical or physicochemical barrier. Phosphorus zones labeled with neodymium did not correspond to mitochondrial clusters. During apoptosis, the number of filopodia with extreme and asymmetric phosphorus accumulation increases. Supravital lanthanoid staining coupled with SEM allows detailed visualization of intercellular and cell-matrix interactions with high contrast and resolution. These results enhance our understanding of phosphate anion accumulation and transfer mechanisms in cells under normal conditions and during apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。