BACKGROUND: Despite increasing evidence supporting the role of an amniotic epithelial-mesenchymal transition (EMT) in the premature rupture of membranes (PROMs), it remains unclear if extracellular vesicle (EV) derived from M1 macrophages play a critical role in triggering the EMT of amniotic epithelial cells (AECs). RESULTS: This study revealed that under inflammatory conditions, EV-miR-146a/155 from M1 macrophages could trigger EMTs and MMP-9 transcription in AECs, elevating the risk of PROM in both mice and humans. Introduction of EV-miR-155 led to inhibition of Ehf expression and reduced E-cadherin transcription in AECs. Meanwhile, EV-miR-146a activated the β-catenin/Tcf7 complex to promote the transcription of Snail, MMP-9, and miR-146a/155, inducing EMTs. Subsequently, EMT induction in AECs is associated with a loss of epithelial characteristics, disruption of cellular junctions, widening of intercellular spaces, and diminished biomechanical properties of the amniotic membrane. CONCLUSION: Inflammatory stimulation prompts the polarization of macrophages in amniotic fluid into the M1 type, which subsequently secrete EVs laden with inflammatory miRNAs. These EVs trigger the EMT of AECs, causing the loss of their epithelial phenotype. Consequently, the biomechanical properties of the amnion deteriorate, ultimately leading to its rupture, posing risks relevant to pregnancy complications such as premature rupture of membranes. The results of this study provide insights into the pathogenesis of PROM and will aid in treatment development.
Exploring the link between M1 macrophages and EMT of amniotic epithelial cells: implications for premature rupture of membranes.
探索 M1 巨噬细胞与羊膜上皮细胞 EMT 之间的联系:对胎膜早破的影响
阅读:10
作者:Gao Yuhua, Zhang Yanan, Mi Ningning, Miao Wang, Zhang Jingmiao, Liu Yize, Li Zhikun, Song Jiaxun, Li Xiangchen, Guan Weijun, Bai Chunyu
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 23(1):163 |
| doi: | 10.1186/s12951-025-03192-6 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
