Introduction: Cardiovascular system is highly sensitive to LPS-induced oxidative damage. This study aimed to show the inhibitory effect of bacterial Lipase on LPS-induced cardiomyoblasts toxicity. Methods: Rat cardiomyoblasts H9C2 were classified into Control, LPS (cells received 0.1, 1 and 10 μg/mL LPS) and LPS+ Lipase groups. In LPS+Lipase group, different concentrations of lipopolysaccharide were pre-incubated with 5 mg/mL bacterial lipase at 37ËC overnight prior to cell treatment. After 72 hours, cell viability was assessed by MTT assay. The expression of key genes related to toll-like receptor signaling pathways was assessed by real-time PCR assay. Percentage of fatty acids was evaluated in each group using gas chromatography assay. The levels of NO was also measured using the Griess reaction. Results: Data showed H9C2 cells viability was decreased after exposure to LPS in a dose-dependent manner (P < 0.05). Incubation of LPS with lipase increased cell survival rate and closed to near-to-control levels (P < 0.05). Lipase had the potential to blunt the increased expression of IRAK and NF-κB in cells after exposure to the LPS. Compared to the LPS group, lipase attenuated the increased level of NO-induced by LPS (P < 0.05). Gas chromatography analysis showed the reduction of saturated fatty acids in cells from LPS group while the activity of lipase prohibited impact of LPS on cell fatty acid composition. LPS decreased the ability of cardiomyoblasts to form colonies. Incubation of LPS with lipase enhanced clonogenic capacity. Conclusion: Reduction in lipopolysaccharide-induced cytotoxicity is possibly related to lipase activity and reduction of modified lipopolysaccharide with toll-like receptor.
Protective effect of bacterial lipase on lipopolysaccharide-induced toxicity in rat cardiomyocytes; H9C2 cell line.
细菌脂肪酶对脂多糖诱导的大鼠心肌细胞毒性的保护作用;H9C2 细胞系
阅读:6
作者:Mamipour Mina, Yousefi Mohammadreza, Dehnad Alireza, Faridvand Yousef, Zarezadeh Reza, Khaksar Majid, Pouyafar Ayda, Rahbarghazi Reza
| 期刊: | Journal Of Cardiovascular and Thoracic Research | 影响因子: | 0.700 |
| 时间: | 2020 | 起止号: | 2020;12(1):35-42 |
| doi: | 10.34172/jcvtr.2020.06 | 种属: | Rat |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
