The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo. The cardioprotective effects and mechanisms of ILA were explored using multi-omics approaches, including single-nucleus RNA sequencing (snRNA-seq) and bulk RNA-seq, and were further validated in Nrf2 knockout mice. The findings revealed that DOX treatment disrupted gut microbiota, significantly reducing the levels of the tryptophan metabolite ILA. In DIC models, ILA supplementation markedly improved cardiac function, reduced collagen deposition, and mitigated cardiac atrophy. The bulk and snRNA-seq analyses indicated that myocardial ferroptosis played a crucial role in the cardioprotective effects of ILA. Experimental data demonstrated that ILA decreased DOX-induced ferroptosis in both DIC mice and DOX-treated H9C2 cells, evidenced by restoration of GPX4 and SLC7A11 levels and reduction of ACSL4. Mechanistically, ILA functions as a ligand for the aryl hydrocarbon receptor (AhR), leading to the upregulation of Nrf2 expression. The protective effects of ILA against ferroptosis were abolished by silencing AhR. Moreover, the beneficial effects of ILA on DIC were eliminated in Nrf2-deficient mice. In conclusion, ILA exerts therapeutic effects against DIC by inhibiting ferroptosis through activation of the AhR/Nrf2 signalling pathway. Identifying the cardioprotective role of the microbial metabolite ILA could offer viable therapeutic strategies for DIC.
Indole-3-Lactic Acid Inhibits Doxorubicin-Induced Ferroptosis Through Activating Aryl Hydrocarbon Receptor/Nrf2 Signalling Pathway.
吲哚-3-乳酸通过激活芳烃受体/Nrf2信号通路抑制阿霉素诱导的铁死亡
阅读:9
作者:Lian Jiangfang, Lin Hui, Zhong Zuoquan, Song Yongfei, Shao Xian, Zhou Jiedong, Xu Lili, Sun Zhenzhu, Yang Yongyi, Chi Jufang, Wang Ping, Meng Liping
| 期刊: | Journal of Cellular and Molecular Medicine | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Jan;29(2):e70358 |
| doi: | 10.1111/jcmm.70358 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
