Acute respiratory distress syndrome (ARDS) and acute lung injury have a diverse spectrum of causative factors including sepsis, aspiration of gastric contents, and near drowning. Clinical management of severe lung injury typically includes mechanical ventilation to maintain gas exchange which can lead to ventilator-induced lung injury (VILI). The cause of respiratory failure is acknowledged to affect the degree of lung inflammation, changes in lung structure, and the mechanical function of the injured lung. However, these differential effects of injury and the role of etiology in the structure-function relationship are not fully understood. To address this knowledge gap we caused lung injury with intratracheal hydrochloric acid (HCL) or endotoxin (LPS) 2Â days prior to ventilation or with an injurious lavage (LAV) immediately prior to ventilation. These injury groups were then ventilated with high inspiratory pressures and positive end expiratory pressure (PEEP) = 0Â cmH(2)O to cause VILI and model the clinical course of ARDS followed by supportive ventilation. The effects of injury were quantified using invasive lung function measurements recorded during PEEP ladders where the end-expiratory pressure was increased from 0 to 15Â cm H(2)O and decreased back to 0Â cmH(2)O in steps of 3Â cmH(2)O. Design-based stereology was used to quantify the parenchymal structure of lungs air-inflated to 2, 5, and 10Â cmH(2)O. Pro-inflammatory gene expression was measured with real-time quantitative polymerase chain reaction and alveolocapillary leak was estimated by measuring bronchoalveolar lavage protein content. The LAV group had small, stiff lungs that were recruitable at higher pressures, but did not demonstrate substantial inflammation. The LPS group showed septal swelling and high pro-inflammatory gene expression that was exacerbated by VILI. Despite widespread alveolar collapse, elastance in LPS was only modestly elevated above healthy mice (CTL) and there was no evidence of recruitability. The HCL group showed increased elastance and some recruitability, although to a lesser degree than LAV. Pro-inflammatory gene expression was elevated, but less than LPS, and the airspace dimensions were reduced. Taken together, those data highlight how different modes of injury, in combination with a 2(nd) hit of VILI, yield markedly different effects.
Differential effects of two-hit models of acute and ventilator-induced lung injury on lung structure, function, and inflammation.
急性肺损伤和呼吸机相关性肺损伤的双重打击模型对肺结构、功能和炎症的不同影响
阅读:3
作者:Bilodeaux Jill, Farooqi Huda, Osovskaya Maria, Sosa Alexander, Wallbank Alison, Knudsen Lars, Sottile Peter D, Albers David J, Smith Bradford J
| 期刊: | Frontiers in Physiology | 影响因子: | 3.400 |
| 时间: | 2023 | 起止号: | 2023 Jul 26; 14:1217183 |
| doi: | 10.3389/fphys.2023.1217183 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
