Density-dependent flow generation in active cytoskeletal fluids.

活性细胞骨架液中密度依赖性流动生成

阅读:3
作者:Kashiwabara Tomoka, Fukuyama Tatsuya, Maeda Yusuke T
The actomyosin cytoskeleton, a protein assembly comprising actin fibers and the myosin molecular motor, drives various cellular dynamics through contractile force generation at high densities. However, the relationship between the density dependence of the actomyosin cytoskeleton and force-controlled ordered structure remains poorly understood. In this study, we measured contraction-driven flow generation by varying the concentration of cell extracts containing the actomyosin cytoskeleton and associated nucleation factors. We observed continuous actin flow toward the center at a critical actomyosin density in cell-sized droplets. The actin flow exhibited an emergent oscillation in which the tracer advection in the bulk solution periodically changed in a stop-and-go fashion. In the vicinity of the actomyosin density where oscillatory dynamics occur, the velocity of tracer particle motion decreases with actomyosin density but exhibits superdiffusive motion. Furthermore, the increase or decrease in myosin activity causes the oscillatory flow generation to become irregular, indicating that the density-dependent flow generation of actomyosin is driven by an interplay between actin density and myosin force generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。