Protein location and function can change dynamically depending on many factors, including environmental stress, disease state, age, developmental stage, and cell type. Here, we describe an integrative computational framework, called the conditional function predictor (CoFP; http://nbm.ajou.ac.kr/cofp/), for predicting changes in subcellular location and function on a proteome-wide scale. The essence of the CoFP approach is to cross-reference general knowledge about a protein and its known network of physical interactions, which typically pool measurements from diverse environments, against gene expression profiles that have been measured under specific conditions of interest. Using CoFP, we predict condition-specific subcellular locations, biological processes, and molecular functions of the yeast proteome under 18 specified conditions. In addition to highly accurate retrieval of previously known gold standard protein locations and functions, CoFP predicts previously unidentified condition-dependent locations and functions for nearly all yeast proteins. Many of these predictions can be confirmed using high-resolution cellular imaging. We show that, under DNA-damaging conditions, Tsr1, Caf120, Dip5, Skg6, Lte1, and Nnf2 change subcellular location and RNA polymerase I subunit A43, Ino2, and Ids2 show changes in DNA binding. Beyond specific predictions, this work reveals a global landscape of changing protein location and function, highlighting a surprising number of proteins that translocate from the mitochondria to the nucleus or from endoplasmic reticulum to Golgi apparatus under stress.
Proteome-wide remodeling of protein location and function by stress.
应激引起的蛋白质组范围内的蛋白质定位和功能重塑
阅读:3
作者:Lee KiYoung, Sung Min-Kyung, Kim Jihyun, Kim Kyung, Byun Junghyun, Paik Hyojung, Kim Bongkeun, Huh Won-Ki, Ideker Trey
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2014 | 起止号: | 2014 Jul 29; 111(30):E3157-66 |
| doi: | 10.1073/pnas.1318881111 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
