Mitogen-activated protein kinase activation by oxidative and bacterial stress in an amphibian cell culture model.

氧化应激和细菌应激在两栖动物细胞培养模型中激活丝裂原活化蛋白激酶

阅读:3
作者:Carter Lisa A, Tabor Maija B, Bonner James C, Bonner Lisa A
The decline of many amphibian species could be caused by their susceptibility to environmental pollutants that cause cellular stress and cell death. A variety of intracellular signal transduction pathways are activated by environmental stress factors, which result in cell death. Mitogen-activated protein kinases are intracellular signaling molecules that include the extracellular signal-regulated kinases (ERK-1 and ERK-2). We used cultured (italic)Xenopus(/italic) tadpole cells (XTC-2 cells) to investigate the activation of ERK by oxidative or bacterial stress, two environmental factors that could contribute to pollution in aquatic systems. We exposed XTC-2 cell monolayers to hydrogen peroxide or bacterial lipopolysaccharide and measured ERK activation by Western blotting using antibodies raised against phosphorylated ERK-1 and ERK-2. Only ERK-2 was detected in XTC-2 cells. Both hydrogen peroxide and lipopolysaccharide caused ERK-2 phosphorylation in a time- and concentration-dependent manner. Hydrogen peroxide caused a 20- to 30-fold increase in ERK-2 activation that peaked 30 min after treatment, and lipopolysaccharide induced a 5- to 10-fold increase in ERK-2 activation that peaked 60 min after treatment. PD98059, an inhibitor of the ERK pathway, reduced the cytotoxic response of XTC-2 cells to hydrogen peroxide or lipopolysaccharide. These data suggest that ERK-2 is an intracellular target of oxidative and bacterial stress in amphibians that mediates, at least in part, the cytotoxic response to hydrogen peroxide or lipopolysaccharide. Moreover, the (italic)Xenopus(/italic) (XTC-2) cell culture system could serve as a useful model to identify agents that might threaten amphibian populations and human health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。