Mitigating hepatic ischemia and reperfusion injury with polyethylene glycol-enriched Ringer's lactate fluid: insights from an isolated perfused rat model.

用富含聚乙二醇的林格氏乳酸盐溶液减轻肝脏缺血再灌注损伤:来自离体灌注大鼠模型的启示

阅读:7
作者:Jeddou Ikram Ben, Zaouali Mohamed Amine, Chaabani Roua, Belgacem Sameh, Cherif Amira, Ben Abdennebi Hassen
BACKGROUND: Cold ischemia-reperfusion (IR) injury is a multifactorial process detrimental to liver graft function during liver transplantation (LT). Although flushing hepatic grafts prior to reperfusion have been well explored, the optimal graft rinse solution to prevent cold IR injury remains largely undefined. The aim of this study was to evaluate whether a new rinse solution combining polyethylene glycol PM 35,000 Da (PEG35) with lactated solution (RLS) could mitigate cold IR injury in Wistar rats. METHODS: Livers were isolated, preserved for 24 h and flushed immediately before ex vivo reperfusion with either RLS or PEG35-enriched RLS. Liver injury, graft function, energy balance, autophagy, oxidative stress as well as inflammatory response were assessed. RESULTS: Flushing hepatic grafts with PEG35-enriched RLS resulted in decreased transaminase levels after cold ischemia. The improved graft function was evidenced by increased bile flow, enhanced BSP clearance, and reduced vascular resistance in these flushed grafts. Phospho-AMPK protein expression, as well as LC3B gene and protein expression were significantly increased compared to those unflushed and flushed only with RLS. PEG35-enriched RLS also maintained the oxidative state, as indicated by reduced activities of antioxidant enzymes and decreased MDA concentration. Additionally, this graft rinse solution down-regulated the inflammatory response by inhibiting the expression of genes involved in the HMGB-1/NF-κB/TNF-α signaling pathway. CONCLUSION: These data strongly suggest that rinsing liver grafts with PEG35-enriched RLS prior to reperfusion represents a simple and cost-effective strategy to enhance liver functional recovery after cold IR injury. This approach could serve as a viable alternative to RLS in clinical applications, highlighting the need for further research to explore its broader implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。