Glaucoma is a heterogenous group of optic neuropathies characterized by the degeneration of optic nerve axons and the progressive loss of retinal ganglion cells (RGCs), which could ultimately lead to vision loss. Elevated intraocular pressure (IOP) is a major risk factor in the development of glaucoma, and reducing IOP remains the main therapeutic strategy. Endothelin-1 (ET-1), a potent vasoactive peptide, has been shown to produce neurodegenerative effects in animal models of glaucoma. However, the detailed mechanisms underlying ET-1-mediated neurodegeneration in glaucoma are not completely understood. In the current study, using a Seahorse Mitostress assay, we report that ET-1 treatment for 4 h and 24 h time points causes a significant decline in various parameters of mitochondrial function, including ATP production, maximal respiration, and spare respiratory capacity in cultured RGCs. This compromise in mitochondrial function could trigger activation of mitophagy as a quality control mechanism to restore RGC health. Contrary to our expectation, we observed a decrease in mitophagy following ET-1 treatment for 24 h in cultured RGCs. Using Morrison's model of ocular hypertension in rats, we investigated here, for the first time, changes in mitophagosome formation by analyzing the co-localization of LC-3B and TOM20 in RGCs. We also injected ET-1 (24 h) into transgenic GFP-LC3 mice to analyze the formation of mitophagosomes in vivo. In Morrison's model of ocular hypertension, as well as in ET-1 injected GFP-LC3 mice, we found a decrease in co-localization of LC3 and TOM20, indicating reduced mitophagy. Taken together, these results demonstrate that both ocular hypertension and ET-1 administration in rats and mice lead to reduced mitophagy, thus predisposing RGCs to neurodegeneration.
A Reduction in Mitophagy Is Associated with Glaucomatous Neurodegeneration in Rodent Models of Glaucoma.
线粒体自噬减少与青光眼啮齿动物模型中的青光眼性神经退行性变有关
阅读:5
作者:Chaphalkar Renuka M, Kodati Bindu, Maddineni Prabhavathi, He Shaoqing, Brooks Calvin D, Stankowska Dorota L, Yang Shaohua, Zode Gulab, Krishnamoorthy Raghu R
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 4; 25(23):13040 |
| doi: | 10.3390/ijms252313040 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
