Combined endurance and resistance exercise training alters the spatial transcriptome of skeletal muscle in young adults.

耐力训练和阻力训练相结合可以改变年轻成年人骨骼肌的空间转录组

阅读:4
作者:Stec Michael J, Graham Zachary A, Su Qi, Adler Christina, Ni Min, Le Rouzic Valerie, Golann David R, Ferrara Patrick J, Halasz Gabor, Sleeman Mark W, Lavin Kaleen M, Broderick Timothy J, Bamman Marcas M
Chronic exercise training substantially improves skeletal muscle function and performance. The repeated demands and stressors of each exercise bout drive coordinated molecular adaptations within multiple cell types, leading to enhanced neuromuscular recruitment and contractile function, stem cell activation, myofiber hypertrophy, mitochondrial biogenesis, and angiogenesis, among others. To comprehensively profile molecular changes induced by combined resistance and endurance exercise training, we employed spatial transcriptomics coupled with immunofluorescence and computational approaches to resolve effects on myofiber and mononuclear cell populations in human muscle. By computationally identifying fast and slow myofibers, we identified fiber type-specific, exercise-induced gene expression changes that correlated with muscle functional improvements. Additionally, integration of human muscle single cell RNAseq data identified an exercise-induced shift in interstitial cell populations coincident with angiogenesis. Overall, these data provide a unique spatial molecular profiling resource for exploring muscle adaptations to exercise, and provide a pipeline and rationale for future studies in human muscle.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。