Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic illness with a multifactorial etiology and heterogeneous symptomatology, posing major challenges for diagnosis and treatment. Here we present BioMapAI, a supervised deep neural network trained on a 4-year, longitudinal, multi-omics dataset from 249 participants, which integrates gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data and detailed clinical symptoms. By simultaneously modeling these diverse data types to predict clinical severity, BioMapAI identifies disease- and symptom-specific biomarkers and classifies ME/CFS in both held-out and independent external cohorts. Using an explainable AI approach, we construct a unique connectivity map spanning the microbiome, immune system and plasma metabolome in health and ME/CFS adjusted for age, gender and additional clinical factors. This map uncovers altered associations between microbial metabolism (for example, short-chain fatty acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets (MAIT, γδT) secreting IFN-γ and GzA. Overall, BioMapAI provides unprecedented systems-level insights into ME/CFS, refining existing hypotheses and hypothesizing unique mechanisms-specifically, how multi-omics dynamics are associated to the disease's heterogeneous symptoms.
AI-driven multi-omics modeling of myalgic encephalomyelitis/chronic fatigue syndrome.
人工智能驱动的肌痛性脑脊髓炎/慢性疲劳综合征多组学建模
阅读:12
作者:Xiong Ruoyun, Aiken Elizabeth, Caldwell Ryan, Vernon Suzanne D, Kozhaya Lina, Gunter Courtney, Bateman Lucinda, Unutmaz Derya, Oh Julia
| 期刊: | Nature Medicine | 影响因子: | 50.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 25 |
| doi: | 10.1038/s41591-025-03788-3 | 研究方向: | 人工智能 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
