Design and immunogenic evaluation of multi-epitope vaccines for colorectal cancer: insights from molecular dynamics and In-Vitro studies.

结直肠癌多表位疫苗的设计和免疫原性评价:来自分子动力学和体外研究的见解

阅读:4
作者:Sun Peiwei, Wang Luolin, Liu Zhong, Xu Zhenglei
BACKGROUND: This study aimed to identify cytotoxic T lymphocyte (CTL)-specific epitopes from three tumor-associated antigens (TAAs)-Dickkopf-like 1 (DKKL1), F-box protein 39 (FBXO39), and Opa-interacting protein 5 (OIP5)-which are overexpressed in colorectal cancer (CRC), as potential candidates for CTL-mediated immunotherapy. METHODS: The amino acid sequences of DKKL1, FBXO39, and OIP5 were analyzed to predict high-affinity CTL epitopes using the NetCTL server. Their antigenicity, allergenicity, conservation, and glycosylation potential were assessed for safety and effectiveness. Cross-reactivity and binding affinities were evaluated through molecular docking. Two multi-epitope vaccine constructs were designed incorporating the CTL epitopes, GM-CSF and IL-2 adjuvants, and a PADRE sequence. Docking studies with Toll-like receptor 4 (TLR-4) were performed. In-vitro assays using human peripheral blood mononuclear cells (PBMCs) were conducted to evaluate the immunogenicity of the vaccine constructs, focusing on cytokine release and T-cell activation. Additionally, molecular dynamics simulations were performed to assess the stability of peptide-HLA interactions. RESULTS: High-affinity CTL-specific epitopes were successfully identified from DKKL1, FBXO39, and OIP5, showing strong binding potential to HLA class I molecules. The selected epitopes were predicted to be non-allergenic, non-glycosylated, and conserved across species. Molecular docking confirmed stable binding interactions between the epitopes and HLA alleles. In-vitro validation demonstrated that PBMCs stimulated with the multi-epitope vaccine constructs produced significant increase in cytokine levels, including IFN-γ and IL-2, indicative of robust CTL activation. Moreover, molecular dynamics simulations showed strong and stable binding affinities between the epitopes and HLA molecules, suggesting effective antigen presentation. Additionally, docking studies revealed strong binding affinities between the vaccine constructs and TLR-4, suggesting their potential to trigger a strong immune response. CONCLUSION: This study identified CTL-specific epitopes from DKKL1, FBXO39, and OIP5 as potential targets for colorectal cancer immunotherapy. The multi-epitope vaccine constructs exhibited significant immunogenic potential, providing a foundation for future clinical validation. These findings underscore the promise of these TAAs as key targets for CTL-based vaccine development in colorectal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。