Human skeletal muscle disuse atrophy has profound and negative effects on the muscle metabolome and lipidome.

人类骨骼肌废用性萎缩对肌肉代谢组和脂质组有深远的负面影响

阅读:5
作者:Kilroe Sean P, Von Ruff Zachary D, Arentson-Lantz Emily J, Romsdahl Trevor B, Linares Jennifer J, Kalenta Hanna, Marchant Erik D, Volpi Elena, Paddon-Jones Douglas, Russell William K, Rasmussen Blake B
We investigated how short-term muscle disuse altered the skeletal muscle metabolome, lipidome, and transcriptome in middle-aged adults. We report that the energy metabolism pathways: nicotinate and nicotinamide metabolism, glycolysis, and TCA cycle, were reduced after 7 days of muscle disuse. These changes in the metabolome were reflected by changes in the transcriptome where multiple genes involved in glycolysis and TCA pathways were reduced after short-term disuse. Phenylalanine, tyrosine, and tryptophan metabolism pathways showed the same response and were reduced after short-term disuse. The skeletal muscle lipidome showed a decrease in phosphatidylinositols but an increase in phosphatidylglycerols and diacylglycerols after short-term muscle disuse. We conclude that short-term muscle disuse in humans has profound and negative effects on the muscle metabolome and lipidome. These include significant downregulation of muscle glycolytic, amino acid, and TCA cycle intermediates. In contrast, skeletal muscle lipids had a divergent response to disuse (e.g., increased phosphatidylglycerols and diacylglycerols, but reduced phosphatidylinositols).NEW & NOTEWORTHY We present the first study that has applied a multiomic analysis (metabolomics, lipidomics, and transcriptomics) of short-term disuse in middle-aged adults. We identified an altered lipidomic and metabolic signature after disuse that included increases in lipids associated with lipotoxicity (e.g., sphingomyelin and diacylglycerol) and reductions in phosphatidylinositol. Energy pathway metabolites for glycolysis and the TCA cycle were reduced after short-term disuse. The lipidomics and metabolomics data were supported by changes in the associated gene expression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。