The abnormal glycosylation and loss of extracellular matrix receptor function of the protein dystroglycan (DG) lead to the development of muscular dystrophy and cardiomyopathy. Dystroglycan is an important receptor for extracellular matrix proteins, such as laminin, in the basement membrane surrounding muscle. Large(myd) mice have a null mutation in a gene encoding the glycosyltransferase LARGE that results in abnormal glycosylation of α-DG and phenotypes similar to those in human α-DG glycosylation-deficient muscular dystrophy. Here, we show that Large(myd) hearts with the loss of DG extracellular matrix receptor function display a cardiomyopathy characterized by myocyte damage in patches of cells positive for membrane impermeant dyes. To examine the cellular mechanisms, we show that isolated adult cardiac myocytes from Large(myd) mice retain normal laminin-dependent cell adhesion, cell surface laminin deposition and basement membrane assembly. However, although isolated adult cardiac myocytes with the loss of α-DG glycosylation adhere normally to laminin substrates both passively and in the presence of mechanical activity, Large(myd) myocytes rapidly take up membrane impermeant dye following cyclical cell stretching. Therefore, while other cell surface laminin receptors are likely responsible for myocardial cell adhesion to the basement membrane, DG has a unique function of stabilizing the cardiac myocyte plasma membrane during repetitive mechanical activity by tightly binding the transmembrane dystrophin-glycoprotein complex to the extracellular matrix. This function of DG to stabilize the myocyte membrane during normal physiologic cell length changes is likely critical for the prevention of the myocardial damage and subsequent remodeling observed in α-DG glycosylation-deficient muscular dystrophies.
Sarcolemma instability during mechanical activity in Largemyd cardiac myocytes with loss of dystroglycan extracellular matrix receptor function.
大眼海狮心肌细胞在机械活动期间肌膜不稳定,肌营养不良蛋白聚糖细胞外基质受体功能丧失
阅读:5
作者:Kabaeva Zhyldyz, Meekhof Kailyn E, Michele Daniel E
| 期刊: | Human Molecular Genetics | 影响因子: | 3.200 |
| 时间: | 2011 | 起止号: | 2011 Sep 1; 20(17):3346-55 |
| doi: | 10.1093/hmg/ddr240 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
