Development and use of DJ-1 affinity microcolumns to screen and study small drug candidates for Parkinson's disease.

开发和使用 DJ-1 亲和微柱筛选和研究帕金森病的小分子候选药物

阅读:9
作者:Jones Jacob C, Lin Jiusheng, Sharmeen Sadia, Rahman Md Masudur, Truong Ha H, Chern Ting-Rong, Wilson Mark A, Hage David S
BACKGROUND: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1. RESULTS: Several factors were examined in optimizing the entrapment method, including the addition of a reducing agent to maintain a reduced active site cysteine residue in DJ-1, the concentration of DJ-1 employed, and the entrapment times. Isatin was used as a known binding agent (dissociation constant, ∼2.0 μM) and probe for DJ-1 activity. This compound gave good retention on 2.0 cm × 2.1 mm inner diameter DJ-1 microcolumns made under the final entrapment conditions, with a typical retention factor of 14 and elution in ∼8 min at 0.50 mL/min. These DJ-1 microcolumns were used to evaluate the binding of small molecules that were selected in silico to bind or not to bind DJ-1. A compound predicted to have good binding with DJ-1 gave a retention factor of 122, an elution time of ∼15 min at 0.50 mL/min, and an estimated dissociation constant for this protein of 0.5 μM. SIGNIFICANCE: These chromatographic tools can be used in future work to screen additional possible binding agents for DJ-1 or adapted for examining drug candidates for other proteins. This work represents the first time protein entrapment has been deployed with DJ-1, and it is the first experimental confirmation of binding to DJ-1 by a small lead compound selected in silico.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。