Novel Protein-Rich Bioactive Bioink Stimulates Cellular Proliferation and Response in 3D Bioprinted Volumetric Constructs.

新型富含蛋白质的生物活性生物墨水可刺激 3D 生物打印体积结构中的细胞增殖和反应

阅读:8
作者:Liu Suihong, Kilian David, Bernhardt Anne, Wirsig Katharina, von Witzleben Max, Duin Sarah, Lode Anja, Hu Qingxi, Gelinsky Michael
3D extrusion bioprinting, a promising and widely adopted technology in the emerging field of biofabrication, has gained considerable attention for its ability to fabricate hierarchically structured, native-mimicking tissue substitutes with precisely defined cell distributions. Despite notable advancements, the limited availability of suitably bioactive bioinks remains a major challenge, hindering the construction of volumetric tissue substitutes effectively mimicking biological functionality. Therefore, this work proposes a protein-rich, low-cost, bioactive bioink: abundantly available eggwhite powder (EWP) is leveraged to functionalize an alginate-methylcellulose (AlgMC) hydrogel matrix and enhance cellular response. The developed EWP-supplemented bioinks not only maintain favorable printability and high shape fidelity but also exhibit remarkable bioactivity. Notably, incorporating EWP into AlgMC-based bioinks enhances shear-thinning features, thereby improving the viability of encapsulated cells within the bioprinted constructs. The versatility and biofunctionality of EWP in bioprinted constructs are demonstrated using three distinct cell types, encompassing sources such as a stem cell line, human soft skin, and stiff bone tissues. Furthermore, the promising and wide applicability of the EWP-supplemented bioink for biofabrication is demonstrated exemplarily in core-shell and multi-channel bioprinting strategies as a proof-of-concept for functional tissue construction. These findings underscore the significant and versatile potential of this novel bioink in biofabrication and biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。