Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for bloodstream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 623 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirmed that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.IMPORTANCEA transposon-mutant screen of group B Streptococcus (GBS) in a bacteremia mouse model of infection revealed virulence factors known to be important for GBS survival such as the capsule, β-hemolysin/cytolysin, and genes involved in metal homeostasis. Many uncharacterized factors were also identified including genes that are part of the metabolic pathway that breaks down methylglyoxal (MG). The glyoxalase pathway is the most ubiquitous metabolic pathway for MG breakdown and is only a two-step process using glyoxalase A (gloA) and B (gloB) enzymes. MG is a highly reactive byproduct of glycolysis and is made by most cells. Here, we show that in GBS, the first enzyme in the glyoxalase pathway, encoded by gloA, contributes to MG resistance and blood survival. We further demonstrate that GloA contributes to GBS survival against neutrophils in vitro and in vivo and, therefore, is an important virulence factor required for invasive infection.
Identification of glyoxalase A in group B Streptococcus and its contribution to methylglyoxal tolerance and virulence.
B族链球菌中乙二醛酶A的鉴定及其对甲基乙二醛耐受性和毒力的贡献
阅读:6
作者:Akbari Madeline S, Joyce Luke R, Spencer Brady L, Brady Amanda, McIver Kevin S, Doran Kelly S
| 期刊: | Infection and Immunity | 影响因子: | 2.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 8; 93(4):e0054024 |
| doi: | 10.1128/iai.00540-24 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
