Maternally inherited RNA and proteins control much of embryonic development. The effect of such maternal information beyond embryonic development is largely unclear. Here, we report that maternal contribution of histone H3.3 assembly complexes can prevent the expression of late-onset anatomical, physiologic, and behavioral abnormalities of C. elegans. We show that mutants lacking hira-1, an evolutionarily conserved H3.3-deposition factor, have severe pleiotropic defects that manifest predominantly at adulthood. These late-onset defects can be maternally rescued, and maternally derived HIRA-1 protein can be detected in hira-1(-/-) progeny. Mitochondrial stress likely contributes to the late-onset defects, given that hira-1 mutants display mitochondrial stress, and the induction of mitochondrial stress results in at least some of the hira-1 late-onset abnormalities. A screen for mutants that mimic the hira-1 mutant phenotype identified PQN-80-a HIRA complex component, known as UBN1 in humans-and XNP-1-a second H3.3 chaperone, known as ATRX in humans. pqn-80 and xnp-1 abnormalities are also maternally rescued. Furthermore, mutants lacking histone H3.3 have a late-onset defect similar to a defect of hira-1, pqn-80, and xnp-1 mutants. These data demonstrate that H3.3 assembly complexes provide non-DNA-based heritable information that can markedly influence adult phenotype. We speculate that similar maternal effects might explain the missing heritability of late-onset human diseases, such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes.
H3.3 Nucleosome Assembly Mutants Display a Late-Onset Maternal Effect.
H3.3 核小体组装突变体表现出迟发性母体效应
阅读:5
作者:Burkhart Kirk B, Sando Steven R, Corrionero Anna, Horvitz H Robert
| 期刊: | Current Biology | 影响因子: | 7.500 |
| 时间: | 2020 | 起止号: | 2020 Jun 22; 30(12):2343-2352 |
| doi: | 10.1016/j.cub.2020.04.046 | 靶点: | H3 |
| 研究方向: | 信号转导 | 信号通路: | 炎性小体 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
