Targeted seed EMS mutagenesis reveals a basic helix-loop-helix transcription factor underlying male sterility in sorghum.

针对种子 EMS 诱变揭示了高粱雄性不育背后的基本螺旋-环-螺旋转录因子

阅读:12
作者:Xiao Yuguo, Khangura Rajdeep S, Wang Zhonghui, Dilkes Brian P, Eveland Andrea L
Forward genetic screens of mutant populations are fundamental for functional genomics studies. However, isolating independent mutant alleles to molecularly identify causal genes is challenging in species recalcitrant to genetic manipulation. Here, we demonstrate that classic seed ethyl methanesulfonate (EMS) mutagenesis coupled with genome sequencing can overcome this limitation in sorghum. We used this method to generate new mutant alleles of sorghum MALE STERILE 8 (MS8) and identified the causal locus for the ms8 phenotype as Sobic.004G270900, which encodes the sorghum ortholog of maize bhlh122, a basic helix-loop-helix (bHLH) transcription factor required for male fertility in maize. Bulked segregant analysis mapped ms8-1 to a region on chromosome 4 containing Sobic.004G270900. Seeds from heterozygous MS8/ms8-1 plants were mutagenized and screened for chimeric inflorescences containing sectors with white, sterile anthers resembling the ms8-1 homozygous phenotype. DNA sequencing of sterile and fertile sectors from a single chimeric inflorescence revealed two mutations in Sobic.004G270900 within the sterile sector, but not the fertile sector. Isolation of this loss-of-function allele (ms8-2) established Sobic.004G270900 as the causative locus for male sterility in the ms8 mutant. We generated additional alleles of MS8 in a different genetic background using CRISPR/Cas9-based gene editing, where deletions in Sobic.004G270900 also resulted in male sterility. Our work identified a gene underlying male sterility in sorghum and provides a novel and straightforward genetic tool for researchers who lack access to advanced transformation facilities to validate gene candidates. Unlike gene editing, no prior knowledge of candidate genes is required for targeted seed EMS mutagenesis to aid identification of causal loci.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。