Midbrain dopamine (DA) neurons are essential for regulating movement, emotion, and reward, with their dysfunction closely linked to Parkinson's disease (PD). While DA neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) have known overlapping roles in behaviors such as depression and reward, their distinct contributions to subtle spontaneous behaviors remain insufficiently understood. In this study, we utilized a 3D behavioral analysis platform powered by machine learning to explore motor and nuanced behavioral changes in a subacute MPTP mouse model of PD. This investigative approach was combined with cell-type-specific genetic ablation of DA neurons in both the SNc and VTA. Our findings highlight significant deficits in rearing, walking, and hunching behaviors correlated with the loss of SNc DA neurons, but not VTA DA neurons, alongside increased overall movement, reduced movement precision, and pronounced right-sided lateralization. These subtle features, particularly rearing deficits and lateralization, emerge as critical behavioral biomarkers of SNc DA neuron loss, thereby enhancing the translational relevance of PD models.
Subtle behavioral alterations in the spontaneous behaviors of MPTP mouse model of Parkinson's disease.
MPTP诱导的帕金森病小鼠模型自发行为的细微改变
阅读:6
作者:Zhong Hao, Lu Kangrong, Wang Liping, Wang Wanshan, Wei Pengfei, Liu Xuemei
| 期刊: | Translational Psychiatry | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 15(1):119 |
| doi: | 10.1038/s41398-025-03312-8 | 种属: | Mouse |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
