Although the basal ganglia (BG) plays a central role in the motor symptoms of Parkinson's disease, few studies have investigated the influence of parkinsonism on movement-related activity in the BG. Here, we studied the perimovement activity of neurons in globus pallidus internus (GPi) of non-human primates during performance of a choice reaction time reaching task before and after the induction of parkinsonism by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuronal responses, including increases or decreases in firing rate, were equally common in the parkinsonian brain as seen prior to MPTP and the distribution of different response types was largely unchanged. The slowing of behavioral reaction times and movement durations following the induction of parkinsonism was accompanied by a prolongation of the time interval between neuronal response onset and movement initiation. Neuronal responses were also reduced in magnitude and prolonged in duration after the induction of parkinsonism. Importantly, those two effects were more pronounced among decrease-type responses, and they persisted after controlling for MPTP-induced changes in the between-trial variability in response timing. Following MPTP the trial-to-trial timing of neuronal responses also became uncoupled from the time of movement onset and more variable in general. Overall, the effects of MPTP on temporal features of GPi responses were related to the severity of parkinsonian motor impairments whereas changes in response magnitude and duration did not reflect symptom severity consistently. These findings point to a previously underappreciated potential role for abnormalities in the timing of GPi task-related activity in the generation of parkinsonian motor signs.
Movement-related activity in the internal globus pallidus of the parkinsonian macaque.
帕金森氏猕猴苍白球内侧部的运动相关活动
阅读:7
作者:Kase Daisuke, Zimnik Andrew J, Han Yan, Harsch Devin R, Bacha Sarah, Cox Karin M, Bostan Andreea C, Richardson R Mark, Turner Robert S
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 30 |
| doi: | 10.1101/2024.08.29.610310 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
