Motor and Non-Motor Effects of Acute MPTP in Adult Zebrafish: Insights into Parkinson's Disease.

急性 MPTP 对成年斑马鱼的运动和非运动影响:对帕金森病的启示

阅读:5
作者:Tagkalidou Niki, Stevanović Marija, Romero-Alfano Irene, Elizalde-Velázquez Gustavo Axel, Herrera-Vázquez Selene Elizabeth, Prats Eva, Gómez-Canela Cristian, Gómez-Oliván Leobardo Manuel, Raldúa Demetrio
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been extensively used in different animal species to develop chemical models of PD. This study aimed to evaluate the effects of acute exposure to MPTP (3 × 150 mg/kg, intraperitoneally) on adult zebrafish by assessing the neurochemical, transcriptional, and motor changes associated with PD pathogenesis. MPTP treatment resulted in a significant decrease in brain catecholamines, including dopamine, norepinephrine, and normetanephrine. Additionally, a trend towards decreased levels of dopamine precursors (tyrosine and L-DOPA) and degradation products (3-MT and DOPAC) was also observed, although these changes were not statistically significant. Gene expression analysis showed the downregulation of dbh, while the expression of other genes involved in catecholamine metabolism (th1, th2, mao, comtb) and transport (slc6a3 and slc18a2) remained unaltered, suggesting a lack of dopaminergic neuron degeneration. Behavioral assessments revealed that MPTP-exposed zebrafish exhibited reduced motor activity, consistent with the observed decrease in dopamine levels. In contrast, the kinematic parameters of sharp turning were unaffected. A significant impairment in the sensorimotor gating of the ASR was detected in the MPTP-treated fish, consistent with psychosis. Despite dopamine depletion and behavioral impairments, the absence of neurodegeneration and some hallmark PD motor symptoms suggests limitations in the validity of this model for fully recapitulating PD pathology. Further studies are needed to refine the use of MPTP in zebrafish PD models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。