Effects of Graphene Derivatives and Near-Infrared Laser Irradiation on E. coli Biofilms and Stress Response Gene Expression.

石墨烯衍生物和近红外激光照射对大肠杆菌生物膜和应激反应基因表达的影响

阅读:3
作者:Maksimova Yuliya, Pyankova Ekaterina, Nesterova Larisa, Maksimov Aleksandr
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial effect. This investigation is devoted to the determination of the expression level of bacterial stress response genes (soxS and rpoS) under graphene oxide (GO), reduced graphene oxide (rGO), and NIR laser irradiation (1270 nm). GO, rGO and NIR laser irradiation separately and irradiation in the presence of graphene derivatives cause an increase in the expression level of rpoS associated with the general stress response of bacteria. GO and rGO do not change the expression level of soxS associated with the cell response to oxidative stress, and decrease it in the presence of a strong oxidizing agent paraquat (PQ). The expression of soxS increases under laser irradiation, but decreases under NIR laser irradiation in combination with graphene derivatives. The effect of GO, rGO, and NIR laser irradiation on the formation and eradication of E. coli biofilms was studied. NIR laser with GO and rGO suppresses the metabolic rate and decreases the intracellular ATP content by 94 and 99.6%, respectively. CNMs are shown to reduce biofilm biomass and the content of extracellular polymeric substances (EPSs), both exopolysaccharides and protein in the biofilm matrix. Graphene derivatives in combination with NIR laser irradiation may be an effective means of combating emerging and mature biofilms of Gram-negative bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。