We previously established a role for the second messenger ceramide in protein kinase R (PKR)-mediated articular cartilage degradation. Ceramide is known to play a dual role in collagen gene regulation, with the effect of ceramide on collagen promoter activity being dependent on its concentration. Treatment of cells with low doses of sphingomyelinase produces small increases in endogenous ceramide. We investigated whether ceramide influences articular chondrocyte matrix homeostasis and, if so, the role of PKR in this process. Bovine articular chondrocytes were stimulated for 7 days with sphingomyelinase to increase endogenous levels of ceramide. To inhibit PKR, 2-aminopurine was added to duplicate cultures. De novo sulphated glycosaminoglycan and collagen synthesis were measured by adding [35S]-sulphate and [3H]-proline to the media, respectively. Chondrocyte phenotype was investigated using RT-PCR and Western blot analysis. Over 7 days, sphingomyelinase increased the release of newly synthesized sulphated glycosaminoglycan and collagen into the media, whereas inhibition of PKR in sphingomyelinase-treated cells reduced the level of newly synthesized sulphated glycosaminoglycan and collagen. Sphingomyelinase treated chondrocytes expressed col2a1 mRNA, which is indicative of a normal chondrocyte phenotype; however, a significant reduction in type II collagen protein was detected. Therefore, small increments in endogenous ceramide in chondrocytes appear to push the homeostatic balance toward extracellular matrix synthesis but at the expense of the chondrocytic phenotype, which was, in part, mediated by PKR.
Exogenous sphingomyelinase increases collagen and sulphated glycosaminoglycan production by primary articular chondrocytes: an in vitro study.
外源性鞘磷脂酶可增加原代关节软骨细胞的胶原蛋白和硫酸糖胺聚糖的生成:一项体外研究
阅读:7
作者:Gilbert Sophie J, Blain Emma J, Jones Pamela, Duance Victor C, Mason Deborah J
| 期刊: | Arthritis Research & Therapy | 影响因子: | 4.600 |
| 时间: | 2006 | 起止号: | 2006;8(4):R89 |
| doi: | 10.1186/ar1961 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
