Methylmercury impairs canonical dopamine metabolism in rat undifferentiated pheochromocytoma (PC12) cells by indirect inhibition of aldehyde dehydrogenase.

甲基汞通过间接抑制醛脱氢酶,损害大鼠未分化嗜铬细胞瘤(PC12)细胞的典型多巴胺代谢

阅读:6
作者:Tiernan Chelsea T, Edwin Ethan A, Hawong Hae-Young, Ríos-Cabanillas Mónica, Goudreau John L, Atchison William D, Lookingland Keith J
The environmental neurotoxicant methylmercury (MeHg) disrupts dopamine (DA) neurochemical homeostasis by stimulating DA synthesis and release. Evidence also suggests that DA metabolism is independently impaired. The present investigation was designed to characterize the DA metabolomic profile induced by MeHg, and examine potential mechanisms by which MeHg inhibits the DA metabolic enzyme aldehyde dehydrogenase (ALDH) in rat undifferentiated PC12 cells. MeHg decreases the intracellular concentration of 3,4-dihydroxyphenylacetic acid (DOPAC). This is associated with a concomitant increase in intracellular concentrations of the intermediate metabolite 3,4-dihydroxyphenylaldehyde (DOPAL) and the reduced metabolic product 3,4-dihydroxyethanol. This metabolomic profile is consistent with inhibition of ALDH, which catalyzes oxidation of DOPAL to DOPAC. MeHg does not directly impair ALDH enzymatic activity, however MeHg depletes cytosolic levels of the ALDH cofactor NAD(+), which could contribute to impaired ALDH activity following exposure to MeHg. The observation that MeHg shunts DA metabolism along an alternative metabolic pathway and leads to the accumulation of DOPAL, a reactive species associated with protein and DNA damage, as well as cell death, is of significant consequence. As a specific metabolite of DA, the observed accumulation of DOPAL provides evidence for a specific mechanism by which DA neurons may be selectively vulnerable to MeHg.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。