Avibactam (AVI) is a diazabicyclooctane (DBO) β-lactamase inhibitor used clinically in combination with ceftazidime. At concentrations higher than those typically achieved in vivo, it also has broad-spectrum direct antibacterial activity against Enterobacterales strains, including metallo-β-lactamase-producing isolates, mediated by inhibition of penicillin-binding protein 2 (PBP2). This activity has some mechanistic similarities to that of more potent novel DBOs (zidebactam and nacubactam) in late clinical development. We found that resistance to AVI emerged readily, with a mutation frequency of 2 à 10(-6) to 8 à 10(-5). Whole-genome sequencing of resistant isolates revealed a heterogeneous mutational target that permitted bacterial survival and replication despite PBP2 inhibition, in line with prior studies of PBP2-targeting drugs. While such mutations are believed to act by upregulating the bacterial stringent response, we found a similarly high mutation frequency in bacteria deficient in components of the stringent response, although we observed a different set of mutations in these strains. Although avibactam-resistant strains had increased lag time, suggesting a fitness cost that might render them less problematic in clinical infections, there was no statistically significant difference in growth rates between susceptible and resistant strains. The finding of rapid emergence of resistance to avibactam as the result of a large and complex mutational target adds to our understanding of resistance to PBP2-targeting drugs and has potential implications for novel DBOs with potent direct antibacterial activity, which are being developed with the goal of expanding cell wall-active treatment options for multidrug-resistant gram-negative infections.IMPORTANCEAvibactam (AVI) is the first in a class of novel β-lactamase inhibitor antibiotics called diazabicyclooctanes (DBOs). In addition to its ability to inhibit bacterial β-lactamase enzymes that can destroy β-lactam antibiotics, we found that AVI had direct antibacterial activity, at concentrations higher than those used clinically, against even highly multidrug-resistant bacteria. This activity is the result of inhibition of the bacterial enzyme penicillin-binding protein 2 (PBP2). Resistance to other drugs that inhibit PBP2 occurs through mutations that involve upregulation of the bacterial "stringent response" to stress. We found that bacteria developed resistance to AVI at a high rate, as a result of mutations in stringent response genes. We also found that bacteria with impairments in the stringent response could still develop resistance to AVI through different mutations. Our findings indicate the importance of studying how resistance will emerge to newer, more potent DBOs in development and early clinical use.
Rapid emergence of resistance to broad-spectrum direct antimicrobial activity of avibactam.
阿维巴坦广谱直接抗菌活性迅速产生耐药性
阅读:4
作者:Nägeli Michelle, Rodriguez Shade, Iradukunda Aimee, Manson Abigail L, Earl Ashlee M, Brennan-Krohn Thea
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 13(8):e0324124 |
| doi: | 10.1128/spectrum.03241-24 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
